Hypospadias in Males With Intrauterine Growth Restriction Due To Placental Insufficiency: The Placental Role in the Embryogenesis of Male External Genitalia

Yoav Yinon,¹ John C.P. Kingdom,¹ Leslie K. Proctor,¹ Edmond N. Kelly,² Joao L. Pippi Salle,³ Diane Wherrett,⁴ Sarah Keating,⁵ Ori Nevo,⁶ and David Chitayat⁷*

¹Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Placenta Clinic, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada

²Department of Pediatrics, Neonatal Intensive Care Unit, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada ³Department of Pediatric Urology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

⁴Division of Endocrinology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

⁵Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada

⁶Department of Obstetrics and Gynecology, Sunnybrook Health Centre, University of Toronto, Toronto, Ontario, Canada

⁷The Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada

Received 20 August 2009; Accepted 11 September 2009

Our aim was to define the association between early onset intrauterine growth restriction (IUGR) due to placental insufficiency and hypospadias in males. We prospectively studied a cohort of small-for-gestational age (SGA) male infants with hypospadias managed by a multidisciplinary team over a 5-year period. Thirty SGA male infants were diagnosed with hypospadias/abnormal genitalia after birth, and four of them were diagnosed antenatally. Five cases occurred in the smaller pair of discordant IUGR twins, where the larger co-twin had normal male genitalia. Serial ultrasounds demonstrated features of early-onset IUGR in all cases at a median gestational age of 21 weeks (range 14–31 weeks). Twenty-one (70%) pregnancies were subsequently complicated by absent/reversed end-diastolic flow in the umbilical arteries indicating severe IUGR, and 17 (57%) women developed severe pre-eclampsia. There were 27 (90%) live births at a median gestational age of 31 weeks (range 27-37); 23 (77%) of the neonates had birth weights <3rd centile. All newborns had normal male karyotypes. In 62% (18/29) the hypospadias was severe. A correlation was found between the severity of the IUGR and the severity of hypospadias as significantly more infants with severe hypospadias were less than the 3rd centile compared to the mild-moderate hypospadias group: 94% (17/ 18) versus 55% (6/11), respectively (P = 0.02). In conclusion, SGA male newborns with hypospadias exhibit a high rate of early -onset severe IUGR due to placental insufficiency. Early placental development likely influences male external genitalia formation. Careful sonographic evaluation of the genitalia is advised when early-onset placentally mediated IUGR is found. © 2009 Wiley-Liss, Inc.

How to Cite this Article:

Yinon Y, Kingdom JCP, Proctor LK, Kelly EN, Pippi Salle JL, Wherrett D, Keating S, Nevo O, Chitayat D. 2010. Hypospadias in males with intrauterine growth restriction due to placental insufficiency: The placental role in the embryogenesis of male external genitalia.

Am J Med Genet Part A 152A:75-83.

Key words: placental insufficiency; intra-uterine growth restriction; hypospadias

INTRODUCTION

Hypospadias is a common malformation in males with an incidence of 0.3–0.4% [Gallentine et al., 2001; Brouwers et al., 2007]. It results from an incomplete fusion of the urethral folds between the 7th and

Published online 11 December 2009 in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/ajmg.a.33140

^{*}Correspondence to:

David Chitayat, Department of Obstetrics and Genecology, The Prenatal Diagnosis and Medical Genetics Program, The Ontario Power Generation Building, 700 University Avenue, Room 3292, Toronto, Ontario, Canada M5G 1Z5. E-mail: dchitayat@mtsinai.on.ca

14th week of gestation. Most cases are isolated and are presumed to be multifactorial traits [Calzolari et al., 1986; Baskin et al., 2001; Manson and Carr, 2003]. Previous epidemiologic studies found a close relationship between low birth weight and hypospadias [Calzolari et al., 1986; Akre et al., 1999; Weidner et al., 1999], yet the underlying mechanism of this association is unclear. Hussain et al. [2002] demonstrated that hypospadias was significantly more common in infants who were small-for-gestational age (SGA), suggesting that intra-uterine growth restriction (IUGR) rather than the absolute birth weight is a more important risk factor for hypospadias. Some evidence suggests that placental insufficiency may be the underlying factor, for example, hypospadias correlates with low weight of the placenta [Stoll et al., 1990], and has been observed in the smaller twin in a mono-chorionic twin pregnancy complicated by discordant growth [Fredell et al., 1998]. These data suggest that the association of low birth weight with hypospadias may be related to placental dysfunction. Since the most severe forms of IUGR have their origins in the first trimester [Smith et al., 1998], we tested the hypothesis that severe hypospadias is associated with early-onset severe placental insufficiency.

METHODS

Institutional research ethics board approval was obtained to audit clinical outcomes and relate these to screening tests of placental function.

Between 2004 and 2008, 1,659 preterm male infants were born at Mount Sinai Hospital, 156 of them were SGA and consisted of our study cohort. Out of this cohort, all male infants who were diagnosed with hypospadias/abnormal genitalia after birth were identified. They all underwent a multidisciplinary assessment and care by a team consisting of geneticists, endocrinologists, neonatologists, and pediatric urologists. All cases of IUGR and hypospadias were followed antenatally in our multidisciplinary placenta clinic, six of them were referred prior to delivery. In this clinic, we screen and follow pregnancies that are considered to be high risk because of medical or obstetric complications for placental dysfunction. This includes first trimester screening at 10-13 weeks of gestation, maternal serum screening at 16-18 weeks, and placental ultrasound examination with uterine artery Doppler evaluation at 19-23 weeks. Pregnancy-associated plasma protein-A (PAPP-A) levels <0.3 multiples of the median (MoM) and alpha-fetoprotein (AFP) >2.0 MoM were considered abnormal as previously reported [Alkazaleh et al., 2006]. Once a diagnosis of IUGR due to placental insufficiency was made, ultrasound examinations were performed every 2 weeks from 24 weeks of gestation, and increased up to 3 per week depending on the gestational age, severity of IUGR (determined by fetal Doppler studies, biophysical profile scores, and amniotic fluid volume), and the presence/severity of preeclampsia. Sonographic findings indicating placental insufficiency were recorded including absent or reversed end-diastolic flow velocities (AREDV) in the umbilical arteries; elevated head/abdomen circumference ratio above the 95th centile for gestational age indicating asymmetrical IUGR [Snijders and Nicolaides, 1994]; reduced amniotic fluid volume (amniotic fluid index <5 cm); abnormal placental shape (small/thick) and texture; bilateral abnormal uterine artery Doppler, both as we have previously defined

[Viero et al., 2004; Toal et al., 2008]. After delivery, all placentas were examined pathologically, including assignment of chorionicity in the twin pregnancies.

Antenatal data were collected prospectively and included maternal demographic information (age, race, parity, exposure to alcohol, tobacco, substance abuse and other teratogens, and preexisting chronic diseases), mode of conception, first and second trimester screening as well as fetal karyotype determined by amniocentesis, serial ultrasound findings, and obstetrical complications. Hypertensive disorders were defined according to the American College of Obstetricians and Gynecologist criteria [ACOG, 2002]. Delivery information was reviewed and included birth weight, gestational age at delivery, Apgar scores, head circumference and length at birth, genital findings, neonatal complications, and placental histopathology.

A diagnosis of hypospadias was based on an initial physical examination; confirmation of diagnosis and severity grading were done by a pediatric urologist. The severity of hypospadias was based on the anatomical position of the urethral meatus: glandular, coronal, and penile were defined as mild–moderate and penoscrotal, scrotal and perineal were defined as severe [Boisen et al., 2005]. The evaluation of these infants included abdominal ultrasonography to define the internal genitalia, chromosome analysis, and extensive endocrinology work-up in cases of ambiguous genitalia, which included blood testosterone level, 17-OH progesterone, FSH, LH, thyroid function tests, dehydrotestosterone, cortisol, androstenedione, DHEAS, and sex hormone binding globulin levels. Some of the cases had DNA analysis of the androgen receptor and 7-dehydrocholesterol. All the patients had serial follow-up in the neonatal neurodevelopmental and pediatric urology clinics.

Descriptive statistics are presented as mean ± 1 SD or median (range). Fisher's exact test was used for statistical comparison of categorical variables. A *P*-value <0.05 was considered significant.

RESULTS

Thirty SGA male infants were diagnosed with hypospadias/abnormal genitalia after birth during the 5-year period. Maternal demographic data and pregnancy characteristics of these cases are shown in Table I. Twenty-three (77%) of these pregnancies were conceived spontaneously, the remainder were conceived following ovulation induction via clomiphene citrate (1), gonadotropins (3), or in vitro fertilization (3). Five were the smaller IUGR co-twin in discordant twins (three were monochorionic-diamniotic, two dichorionicdiamniotic).

Antenatal evidence of placental dysfunction was common; low PAPP-A levels <0.3 MoM were found in 45% and elevated AFP >2.0 MoM in 71%. Both markers were abnormal in 36% of cases. Abnormal uterine artery Doppler (mean pulsatility index >1.45 and bilateral early diastolic notches) was found in 50% (11/22) of pregnancies that had performed this test.

Serial ultrasound examinations established the diagnosis of early onset of growth restriction by the defined criteria at a median gestational age of 21 weeks. Sonographic findings indicating placental dysfunction consisted of absent/reversed end-diastolic flow in the umbilical arteries in 21 (70%) fetuses, oligohydramnios in 15 (50%) pregnancies, asymmetrical pattern of growth restriction as

|--|

	No. of women
Characteristic	(n=30) n (%)
Maternal age (mean \pm SD)	33 ± 6
Ethnicity	
Caucasian	19 (63)
Asian	8 (27)
African	3 (10)
Parity (mean \pm SD)	0.6 ± 0.9
Mode of conception	
Spontaneous	23 (77)
Clomiphene/ovulation induction	4 (13)
IVF	3 (10)
Type of pregnancy	
Singleton	25 (83)
Twins ^a	5 (17)
Prenatal screening	
PAPP-A (MoM, mean \pm SD)	0.5 ± 0.4
Low PAPP-A (<0.3 MoM)	5/11 (45)
AFP (MoM, mean \pm SD)	3 ± 1.9
Increased AFP (>2 MoM)	12/17 (71)
hCG (MoM, mean \pm SD)	2.5 ± 1.5
Increased hCG (>2.5 MoM)	5/13(38)
US findings	
Gestational age at onset of growth restriction (median, range)	21 (14 - 31)
Head/abdomen ratio prior to	1.2 (1.1 - 1.44)
Aligobudrampios	15 (50)
AREDV in the umbilical arteru	21 (20)
Abnormal placental morphology	15 (50)
Ashormal placental morphology	13 (30)

^aThree monochorionic-diamniotic and two dichorionic-diamniotic twins.

evident by head/abdomen circumference ratio above the 95th centile in 15 fetuses (50%), and abnormal placental shape or texture in 15 (50%) cases.

The obstetrical and neonatal outcomes are summarized in Table II. Of the 30 pregnancies, 27 (90%) were live born at a median gestational age of 31 weeks (range 27–37 weeks). Preterm delivery at <34 weeks of gestation occurred in 28 women (93%); all were iatrogenic by induction of labor or by cesarean section for the following reasons: severe pre-eclampsia (14), severe IUGR (accompanied by pre-eclampsia in two of them), and non-reassuring fetal condition by ultrasound and/or non-stress test (9), placental abruption (2), intra-uterine fetal death (IUFD) (2), and pre-eclampsia with IUFD (1).

Mean birth weight was 970 g (range 460–2,195); 23 (77%) of the neonates were below the 3rd centile for sex and gestational age according to birth weight data for Canadian infants [Kramer et al., 2001], and the rest were below the 10th centile.

The placental histopathologic findings are summarized in Table III. Twelve (45%) had a small placenta (weight <10th centile). Findings consistent with ischemic–thrombotic placental pathology were found in 22 (81%) cases including accelerated

TABLE II. Obstetrical and Neonatal Outcome

No. of pregnancies (%) (n = 30)
17 (57)
2 (7)
31 (27 – 37)
28/30 (93)
6/30 (20)
970 ± 446
3 (10)
2 (7)
24(80)

villous maturation, perivillous fibrin deposition, decidual vasculopathy, infarction, and fetal thrombotic vasculopathy.

Postnatal genitalia findings are summarized as individual cases in Table IV.

In four cases the genital abnormality was diagnosed antenatally (Fig. 1). In two cases a diagnosis of a female fetus was made and only after a male karyotype was found by amniocentesis, the diagnosis of abnormal genitalia was established. Chromosome analysis was performed postnatally on peripheral blood lymphocytes and all showed a normal male karyotype (46, XY). In 11, the karyotype was determined prenatally in amniocytes and confirmed after birth.

Severe proximal hypospadias occurred in 62% (18/29) of the newborns and mild–moderate hypospadias was seen in 38% (11/29). Of the 18 infants with severe hypospadias, 17 (94%) were below the 3rd centile compared to 6 (55%) infants with mild–moderate hypospadias (P = 0.02). The incidence of AREDV in the umbilical artery was similar in both groups: 67% (12/18) in the severe hypospadias group versus 82% (9/11) in the mild hypospadias group (P = 0.7). Associated genital abnormalities included micro-

TABLE III. Histopathologic Findings of the Placenta

	No. of cases
Histopathologic findings	(n = 27) ^a
Normal	2
Placental weight $<$ 10th centile	12
Cord <2 cm from nearest edge	7
Decidual vasculopathy	4
Accelerated villous maturation	5
Lesions of the parenchyma	
Infarction	9
Fetal thrombotic vasculopathy	6
Increased perivillous fibrin deposition	6

^aPlacental pathology was not available for three cases.

S
0.0
2
•
-
2
ш.,
_
and the second s
-
Ð
(7)
-
<u> </u>
>
_
1.1.1
8
A

	Pregnancy	GA at	Birth weight			ſ
Case	complications	delivery	(centile)	Placental pathology	Genital findings	Long-term outcome ⁴
1	Severe pre-eclampsia,	30 + 3	880 (<3)	250 g [< 10%] and villi with	Severe hypospadias, small	Normal at 4 months
	REDV, and			irregular maturation	phallus, and descended	
	oligohydramnios			infarction	testes	
N	Severe pre-eclampsia	32 + 6	1,200 (<3)	Placental weight $<\!10$ th	Proximal midscrotal hypo-	Normal at 11 months
	and REDV in UA			centile and increased	spadias, severe chordee,	
				perivillous fibrin	penoscrotal transposition,	
				deposition	descended testicles, and	
					bifid scrotum	
m	Severe pre-eclampsia	33	1,450 [5]	213 g [$<$ 10%], excessive	Penoscrotal hypospadias,	Normal at 24 months
	-			intervillous fibrin	penoscrotal transposition.	
				deposits. and fetal	chordee of 40° , and	
				thrombotic vasculopathu	undescended testes	
4	Severe pre-eclamosia	32	1.300 (<3)	Vellamentous cord insertion.	Severe penoscrotal hupo-	Mild delau in pross motor
				2-vesel cord and	shadias hifid scrottum	development at 5 months
					Siliali pilalius (±r IIIII), coloro chordoo cond	
I					descended testes	· · ·
ഹ	AEDV in UA and	28	570 (<3)	Vellamentuous insertion,	Severe perineal hypospadias	Neonatal death at 5 min
	oligohydramnios			accelerated	and undescended testes	
				villous maturation, and		
				distal villous hypoplasia		
و	AEDV in UA and	33 + 5	1,160 [<3]	Laterally inserted cord,	Perineal hypospadias, bifid	Death at 9.5 months
	oligohudramnios			circummarginate	scrotum, short phallus	respiratoru
	0			insertion of the	[1.5 cm]. and	failure. Bronco-
					underconded tester	
					allaescellaea (estes	
				fetal thrombotic		dysplasia and
				vasculopathy		hydrocephalus
~	Oligohydramnios	31 + 6	940 (<3)	Placental weight $<\!10$ th	Mild hypospadias with	Not available
				centile, marginal cord	double opening at tip of	
				insertion, and	penis and descended	
				increased perivillous fibrin	testes	
				deposition		
ω	AEDV	26 + 6	460 (<3)	Small placenta <10th	Ambiguous genitalia: broad	Stillbirth
				centile, chronic deciduitis,	short phallus, an urethral	
				and areas of infarction	opening along the ventral	
					aspect, bifid scrotum, and	
					undescended testes	
റ	Oligohydramnios	36	1,980 (<3)	Subchorionic fibrin	Severe hypospadias, bifid	Normal at 12 months
				deposition and	scrotum, and	
				intervillous thrombus	undescended testes	
10	Severe pre-eclampsia,	31 + 3	930 (<3)	Marginal cord insertion,	Mild hypospadias and	Normal at 25 months
	oligohydramnios,			circummarginate	undescended testis	
	PPROM, and AEDV			membranes, and decidual		
	in UA			vasculopathy		

in gross motor nent at 5 months

Normal at 36 months	Not available	Normal at 36 months	Stillbirth [Ebstein's anomaly and coarctation, malrotation of the bowel]	Not available	Global delay at 48 months and PVL	Mild delay in fine motor skills at 24 months	Not available	Delayed in motor skills and language skills at 18 months and congenital hypothyroidism	[Continued]
Bifid scrotum, posterior scrotal fusion and severe perineal hypospadias, penoscrotal transposition, severe chordee, and descended testes	Severe perineal/scrotal hypospadias, very small penis with severe chordee, penoscrotal transposition, bilateral descended testis, and bilateral large inguinal hernias	Bifid scrotum, perineal hypospadias, penoscrotal transposition, severe chordee, phallus of 3 cm (5 months), descended testes, and bilateral inguinal hernia	Hypospadias	Glanular hypospadias	Subcoronal (distal shaft) hypospadias with significant chordee, rt. Inguinal hernia and descended testes	Midshaft hypospadias and descended testes	Distal hypospadias and descended testes	Penoscrotal hypospadias, mild chordee (25–30°), descended testes, and left inguinal hernia	Mild hypospadias and descended testes
No significant pathology	One focus of recent intervillous thrombosis	Placental weight <10th centile, area of villous infarction, and slightly increased perivillous fibrin deposition	Retroplacental hemorrhage with associated villous infarction	No significant pathology	Unequal sharing of parenchyma, twin A-30%, B-70%, and small area of infarction	Circummarginate membranes and amnion nodosum of the amniotic epithelium	Weight <10th centile	Monochrionic diamniotic twin placenta with area of infarction	Small chorioangioma and focal thrombosis
780 [<3]	1,050 [<3]	850 [<3]	23.3(correlates with 14 weeks)	540 (<3)	600 (<3)	1,130 [<3]	760 [<3]	780 [<3]	1,430 [5]
32 + 5	32	28 + 3	18	30	28+3	33 + 3	30 + 6	31	33
Severe pre-eclampsia and REDV in UA	Placental abruption and oligohydramnios	REDV in UA	IUFD at 18 weeks	REDV in UA and oligohydramnios [DC/DA twins]	Severe pre-eclampsia, REDV in UA, and oligohydramnios (MC/DA twins)	Oligohydramnios and gestational diabetes [DC/DA twins]	Severe pre-eclampsia, oligohydramnios, and REDV in UA [MC/DA twins]	Twin to twin transfusion syndrome, severe pre-eclampsia, AEDV, and oligohydramnios [MC/DA twins]	Chronic hypertension, REDV in UA, and gestational diabetes
11	12	13	14	15	16	17	18	19	20

	ć	č		TABLE IV. (Continued)		
	Pregnancy	GA at	Birth weight			
Lase 21	complications Severe pre-eclampsia and AEDV in UA	dellvery 30	(centile) 1,110 [10]	racental pathology Weight <10th centile, foci of avascular villi, multiple infarcts, and hemorrhagic endovasculitis	central mungs Mild distal hypospadias and undescended testis	Long-term outcome Normal at 6 months
22	Severe pre-eclampsia and AEDV in UA	29	920 (5–10)	Focal infarction	Mild hypospadias with chordee and descended testes	Normal at 7 months
23	Severe pre-eclampsia, oligohydramnios, and AEDV	28	558 [<3]	Weight <10th centile and severe decidual vasculopathy	Complete penoscrotal hypospadias and no fusion of scrotal folds and right undescended testes	Stillbirth
24	REDV in UA and oligohydramnios	29	580 [<3]	Weight <10th centile, massive perivillous fibrin deposition, and early decidual vasculopathy	Severe proximal (?) hypospadias and undescended testes	Massive intra-cranial hemorrhage and neonatal death after 24 hr
25	Severe pre-eclampsia	37	2,195 [<3]	Not available	Scrotal hypospadias, chordee-marked ventral curvature, and low inguinal testes	Normal at 12 months
26	Severe pre-eclampsia and AEDV in UA	29 + 3	760 (<3)	Not available	Penoscrotal hypospadias, bifid scrotum, ventral chordee, small penis (2 cm at 2 months), and both testes in the scrotum at normal size	Normal at 5 months
27	Placental abruption and AEDV in UA	94 2	1,480 [<3]	Not available	Severe perineal hypospadias, minor penoscrotal transposition and severe chordee, micropenis [2–2.5 cm at 3 months], bifid scrotum, and bilateral undescended testes	Normal at 48 months
58	Chronic hypertension, superimposed pre-eclampsia, REDV in UA, and oligohydramnios	27	670 (<3)	Placental weight 10–25 centile, multifocal infarction, and no decidual vasculopathy	Ambiguous genitalia: small phallus [1 cm], severe perineal hypospadias, and undescended testes	Normal at 3 months
29	Severe pre-eclampsia and REDV in UA	29	860 (5)	Placental weight 10–25 centile, focal chronic villitis, and chronic intervillositis	Glanular hypospadias, mild chordee, and descended testes	Small left sided IVH and neurologically normal at 2 months
30	Severe pre-eclampsia and AEDV	30	1,100 (10)	Two areas of infarction and no fetal or decidual vasculopathy	Mild hypospadias	Neurologically normal at 2 months

FIG. 1. Ultrasound image at 28 weeks of gestation of an IUGR fetus with AEDV demonstrating micropenis, hypospadias (a), and bifid scrotum (b); postnatal examination confirmed the antenatal diagnosis (c). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

penis (8), bifid scrotum (9), penoscrotal transposition (6), severe chordee (11), and cryptorchidism (14).

In 11 infants the hypospadias was so severe that the gender could not be determined. All were investigated by our Multidisciplinary Urogenital Team, and DNA analysis of the androgen receptor gene (regarding the possibility of partial androgen insensitivity) was performed. At the completion of these investigations a male gender was assigned in all cases, and none of them had evidence of incomplete androgen insensitivity.

Three of the cases had non-genital anomalies: the first was a patient with hydrocephalus, minor facial anomalies, and clinodactyly of the 5th fingers, feeding difficulties and developmental delay who died at the age of 9 months. The second was a neonate who was born at 28 weeks gestation, weighed 570 g and had facial anomalies, and died 5 min after birth. The third was a patient with Ebstein anomaly and coarctation of the aorta who died in utero at 18 weeks of gestation. In all three extensive investigations were done but no specific diagnosis could be made. The possibility that the hypo-sdpadias was secondary to a syndrome in these three cases could not be excluded.

Our cohort included five sets of discordant twins, in which the IUGR twin had hypospadias and the healthy co-twin had normal male genitalia (Table III, cases 15–19). Three of these twins were monochorionic-diamniotic and all were complicated with severe pre-eclampsia. Interestingly, the severity of the hypospadias appeared to be milder in the IUGR twins: four of the five IUGR twins had mild hypospadias, whereas only 7 of the 25 IUGR singletons had mild hypospadias.

DISCUSSION

This study describes the association between hypospadias and early onset IUGR in 30 fetuses over a 5-year-time period in a single center. This cohort of patients is unique as all had antenatal follow-up showing early onset of IUGR with sonographic findings indicating severe placental dysfunction in most of these pregnancies. Moreover, our cohort represents the more extreme cases of IUGR as most of the fetuses (77%) were below the 3rd centile. The nature and severity of the underlying placental disease was substantiated by postnatal histopathologic examination of the placentas by a perinatal pathologist. Nearly half had chorion regression (small placentas with eccentric cords) [Proctor et al., 2009] and most had some evidence of ischemic-thrombotic injury to the gas-exchanging placental villi. Of these infants, 62% had severe hypospadias and 11 had ambiguous genitalia. All these infants had normal male karyotypes, and none had evidence of an underlying genetic cause for hypospadias.

The association between low birth weight and hypospadias has been described before [Calzolari et al., 1986; Akre et al., 1999; Weidner et al., 1999], and two previous studies have reported on the association between IUGR and hypospadias [Hussain et al., 2002; Fujimoto et al., 2008]. However, in these studies a diagnosis of IUGR was inferred due to a postnatal diagnosis of SGA infant at birth. Our study progresses the findings of these earlier reports by establishing a clear link both to severely impaired fetal growth and to an underlying diagnosis of severe placental dysfunction. Fetal growth restriction can result from a variety of intrinsic or extrinsic insults, yet all our cases had sonographic findings indicating placental dysfunction as the cause of growth restriction.

Hussain et al. showed a 3.83% incidence of hypospadias among SGA male infants compared to 1.27% among AGA infants [Hussain et al., 2002]. Recently, Fujimoto et al. reported on a series of 104 extremely low birth weight (<1,500 g) male infants, and 16 (15.3%) of them having hypospadias [Fujimoto et al., 2008]. Our study design is not able to determine the true incidence of hypospadias among IUGR fetuses due to the inherent selection bias in our tertiary clinical practice. However, since during the study period, 156 IUGR male infants less than 37 weeks of gestation were delivered at our hospital, the rough estimate for the incidence of hypospadias in IUGR fetuses is 19% (30/156) compared to a background incidence of 0.3% [Gallentine et al., 2001; Brouwers et al., 2007]. Therefore, it is likely that severe placental dysfunction is causally associated with disruption of normal male external genital development. During the study period no case of term IUGR with hypospadias was identified, indicating that this association is more common among the severe cases of growth restriction, requiring preterm delivery.

In the Fujimoto et al. [2008] study, 16 male infants with hypospadias and birth weight below 1,500 g were compared to 62 controls whose birth weight was less than 1,500 g but did not have hypospadias. The patients with hypospadias demonstrated a significantly higher placenta-to-fetal ratio associated with placental infarction compared to controls [Fujimoto et al., 2008]. Moreover, placental histopathologic findings in the hypospadias cases revealed severe degenerative changes, infarction, and calcification, similar to the findings in our study. However, the prevalence of pregnancyinduced hypertension in their study was significantly lower in the hypospadias group than in controls (14.2% vs. 26%, respectively), whereas 57% of the pregnancies in our series were complicated by severe pre-eclampsia, as expected in the presence of severe placental dysfunction. Similarly, in a large population-based case-control study hypospadias was shown to be associated with severe preeclampsia with an odds ratio of 2.1 [Akre et al., 1999]. The association between pre-eclampsia and hypospadias reflects abnormal placental function.

The most severe forms of placenta-mediated IUGR originate in the early part of the first trimester, around weeks 7-8, when the male external genitalia are forming. This has been supported by studies showing that low maternal circulating levels of PAPP-A at 8-14 weeks of gestation are significantly predictive of IUGR, and more so when measured prior to 13 weeks [Smith et al., 2002, 2006; Dugoff et al., 2004]. However, the underlying mechanism of the association between hypospadias and placental insufficiency is unclear. The development of the human male urethra, which occurs between 7 and 14 weeks of gestation, is the result of androgen action on the external genitalia. Lack of testosterone, 5-alpha reductase deficiency, complete or incomplete androgen receptor insensitivity, and steroidogenic enzyme deficiencies are known to result in ambiguous genitalia. The earlier the disruption, the more severe the hypospadias [Main et al., 2006]. Since fetal testosterone secretion is under the influence of placental hCG during the first 14 weeks of gestation [Brouwers et al., 2007], placental dysfunction leading to insufficient hCG supply, may theoretically result in hypospadias [Fredell et al., 2002]. However, placental dysfunction is known to be associated with high maternal serum hCG. Thus, it seems that there is another placental enzyme involved in normal placental function, which also produces androgens, necessary for the normal development of male external genitalia. This mechanism may be similar to the placental esterase deficiency that causes masculinization of the

female external genitalia. An alternative explanation is that one or more of the growing array of genes controlling early fate decisions in placentation [Rawn and Cross, 2008] either directly or indirectly affects the formation of the male external genitalia.

A large proportion (62%) of the infants in our study had severe hypospadias compared to only 6% in the Fredell et al. cohort of 2,500 boys with hypospadias [Fredell et al., 2002] and 23% in Hussain's study, which included SGA infants with hypospadias [Hussain et al., 2002]. This may reflect the early onset as well as the severity of the placental dysfunction in our cohort of patients, in view of the fact that our center is a tertiary facility involved in the more severe cases of IUGR. Unlike previous studies, which did not show a correlation between the severity of hypospadias and the severity of growth restriction [Hussain et al., 2002; Fujimoto et al., 2008], our data do support such relationship as significantly more infants with severe hypospadias were below the 3rd centile compared to the ones with mild–moderate hypospadias.

Another indication for an association between IUGR and hypospadias comes from monozygotic twins. A study of 18 twin pairs in which one twin had hypospadias and one did not, found that in 16 pairs, the healthy co-twin weighed at birth 500 g more than the twin with hypospadias [Fredell et al., 1998]. In our study five of the cases were twins (three monochrionic and two dichorionic with unknown zygosity), in which the IUGR twin was the one with hypospadias. Since monozygotic twins share the same intrauterine environment and genotype as well as the same placenta, the discordance for the hypospadias is difficult to explain. Conditions, for which monozygotic twins are discordant, are usually multifactorial or the result of a new dominant mutation that affected one of the twins or discordance for a chromosome abnormality, which was ruled out in our cases. However, these data support the hypothesis that fetal growth and risk of hypospadias are strongly associated and may indicate an epigenetic phenomena as the cause of the association between IUGR and hypospadias.

Since there is substantial evidence for increased risk of hypospadias/ambiguous genitalia in IUGR male fetuses, in patients with early placental dysfunction an US study directed to the fetal genitalia should be considered, and if amniocentesis is done correlation between the fetal phenotypic sex and chromosome sex should be determined. A discrepancy between the two should be discussed among the specialists involved in the investigation and treatment of babies with ambiguous genitalia and presented to the women/couples in view of the above findings. This will allow the women/parents to make an informed decision regarding the pregnancy and to prepare them for the delivery and the postnatal investigation and treatment required. An attempt should be made to obtain a piece of cord and cord blood to allow in depth postnatal investigation since obtaining sufficient amount of blood for DNA extraction, in these cases, may be difficult.

REFERENCES

ACOG Practice bulletin. Number 33, January. 2002. Diagnosis and management of preeclampsia and eclampsia. Obstet Gynecol 99:159–167.

Akre O, Lipworth L, Cnattingius S, Sparen P, Ekbom A. 1999. Risk factor patterns for cryptorchidism and hypospadias. Epidemiology 10:364–369.

- Alkazaleh F, Chaddha V, Viero S, Malik A, Anastasiades C, Sroka H, Chitayat D, Toi A, Windrim RC, Kingdom JC. 2006. Second-trimester prediction of severe placental complications in women with combined elevations in alpha-fetoprotein and human chorionic gonadotrophin. Am J Obstet Gynecol 194:821–827.
- Baskin LS, Himes K, Colborn T. 2001. Hypospadias and endocrine disruption: Is there a connection? Environ Health Perspect 109: 1175–1183.
- Boisen KA, Chellakooty M, Schmidt IM, Kai CM, Damgaard IN, Suomi AM, Toppari J, Skakkebaek NE, Main KM. 2005. Hypospadias in a cohort of 1072 Danish newborn boys: Prevalence and relationship to placental weight, anthropometrical measurements at birth, and reproductive hormone levels at three months of age. J Clin Endocrinol Metab 90:4041–4046.
- Brouwers MM, Feitz WF, Roelofs LA, Kiemeney LA, de Gier RP, Roeleveld N. 2007. Risk factors for hypospadias. Eur J Pediatr 166:671–678.
- Calzolari E, Contiero MR, Roncarati E, Mattiuz PL, Volpato S. 1986. Aetiological factors in hypospadias. J Med Genet 23:333–337.
- Dugoff L, Hobbins JC, Malone FD, Porter TF, Luthy D, Comstock CH, Hankins G, Berkowitz RL, Merkatz I, Craigo SD, Timor-Tritch IE, Carr SR, Wolfe HM, Vidaver J, D'alton ME. 2004. First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: A population-based screening study (the FASTER Trial). Am J Obstet Gynecol 191:1446–1451.
- Fredell L, Lichtenstein P, Pedersen NL, Svensson J, Nordenskjold A. 1998. Hypospadias is related to birth weight in discordant monozygotic twins. J Urol 160:2197–2199.
- Fredell L, Kockum I, Hansson E, Holmner S, Lundquist L, Lackgren G, Pedersen J, Stenberg A, Westbacke G, Nordenskjold A. 2002. Heredity of hypospadias and the significance of low birth weight. J Urol 167: 1423–1427.
- Fujimoto T, Suwa T, Kabe K, Adachi T, Nakabayashi M, Amamiya T. 2008. Placental insufficiency in early gestation is associated with hypospadias. J Pediatr Surg 43:358–361.
- Gallentine ML, Morey AF, Thompson IM Jr 2001. Hypospadias: A contemporary epidemiologic assessment. Urology 57:788–790.
- Hussain N, Chaghtai A, Herndon CD, Herson VC, Rosenkrantz TS, McKenna PH. 2002. Hypospadias and early gestation growth restriction in infants. Pediatrics 109:473–478.

- Kramer MS, Platt RW, Wen SW, Joseph KS, Allen A, Abrahamowicz M, Blondel B, Breart G. 2001. A new and improved population-based Canadian reference for birth weight for gestational age. Pediatrics 108:E35.
- Main KM, Jensen RB, Asklund C, Hoi-Hansen CE, Skakkebaek NE. 2006. Low birth weight and male reproductive function. Horm Res 65:116–122.
- Manson JM, Carr MC. 2003. Molecular epidemiology of hypospadias: Review of genetic and environmental risk factors. Birth Defects Res Part A 67:825–836.
- Proctor LK, Toal M, Keating S, Chitayat D, Okun N, Windrim RC, Smith GC, Kingdom JC. 2009. Placental size and the prediction of severe earlyonset intrauterine growth restriction in women with low pregnancyassociated plasma protein-A. Ultrasound Obstet Gynecol 34:274–282.
- Rawn SM, Cross JC. 2008. The evolution, regulation, and function of placenta-specific genes. Annu Rev Cell Dev Biol 24:159–181.
- Smith GC, Smith MF, McNay MB, Fleming JE. 1998. First-trimester growth and the risk of low birth weight. N Engl J Med 339:1817–1822.
- Smith GC, Stenhouse EJ, Crossley JA, Aitken DA, Cameron AD, Connor JM. 2002. Early pregnancy levels of pregnancy-associated plasma protein a and the risk of intrauterine growth restriction, premature birth, preeclampsia, and stillbirth. J Clin Endocrinol Metab 87:1762–1767.
- Smith GC, Shah I, Crossley JA, Aitken DA, Pell JP, Nelson SM, Cameron AD, Connor MJ, Dobbie R. 2006. Pregnancy-associated plasma protein A and alpha-fetoprotein and prediction of adverse perinatal outcome. Obstet Gynecol 107:161–166.
- Snijders RJ, Nicolaides KH. 1994. Fetal biometry at 14–40 weeks' gestation. Ultrasound Obstet Gynecol 4:34–48.
- Stoll C, Alembik Y, Roth MP, Dott B. 1990. Genetic and environmental factors in hypospadias. J Med Genet 27:559–563.
- Toal M, Keating S, Machin G, Dodd J, Adamson SL, Windrim RC, Kingdom JC. 2008. Determinants of adverse perinatal outcome in high -risk women with abnormal uterine artery Doppler images. Am J Obstet Gynecol 198:330e1–330e7.
- Viero S, Chaddha V, Alkazaleh F, Simchen MJ, Malik A, Kelly E, Windrim R, Kingdom JC. 2004. Prognostic value of placental ultrasound in pregnancies complicated by absent end-diastolic flow velocity in the umbilical arteries. Placenta 25:735–741.
- Weidner IS, Moller H, Jensen TK, Skakkebaek NE. 1999. Risk factors for cryptorchidism and hypospadias. J Urol 161:1606–1609.